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I. INTRODUCTION

Zeolitic materials are used as sorbents and catalysts in a variety of processes within the
chemical, petroleum, petrochemical, and food industries. Zeolite crystals are incorporated
into binders (such as amorphous aluminosilicate) and perhaps a diluent (typically a clay
mineral), and used in the form of powder (in fluidized beds) or pellets (in fixed beds).
Alternatively, zeolite crystals are coated onto a porous membrane support and used in
(catalytic) membrane permeation devices.

Zeolite-based processes are carried out either under steady-state, unsteady-state, or
cyclic conditions. Fixed-bed adsorbers are typically operated under transient conditions.
Zeolite membrane processes typically operate under steady-state conditions. Simulated
moving-bed adsorbers operate under cyclic conditions. While many of the transport issues
can be understood from the standpoint of classical diffusion and flow, special attention
needs to be paid to the proper description of mixture sorption and diffusion in zeolites.
The purpose of this chapter is to highlight the special features of zeolite sorption and
diffusion by means of several illustrative examples of practical importance.

II. TRANSIENT UPTAKE OF A SINGLE COMPONENT WITHIN A ZEOLITE

Let us begin by considering the case of a batch adsorber in which zeolite particles are
brought into contact with a fluid phase containing a component species i that diffuses into
the particle (of diameter dp) into which the zeolite crystals are embedded; see Fig. 1. There
are three steps in the intraparticle diffusion process.

1. Component i in the bulk fluid phase surrounding the particle has first to diffuse
across the stagnant layer, of thickness yf, surrounding the particle. The stagnant
‘‘film’’ thickness yf is determined by the fluid–particle hydrodynamics. Higher
Reynolds numbers will lead to smaller yf values and, consequently, lower film
diffusion resistance.

2. Next, component i diffuses into the macropores. For a fluid at least four
resistances contribute to transport in the macropore. These are Knudsen
diffusion (a transport process when the fluid is essentially gaseous in nature,
where molecular collisions between the diffusing species and the pore walls
predominate); surface diffusion (diffusive motion of adsorbed species over the

Copyright © 2003 Marcel Dekker, Inc.



walls of the pores); bulk diffusion (a molecular transport process mediated
primarily by collisions between the diffusing species themselves); and viscous flow
(species convected by laminar flow down a pressure gradient inside the pore).
With liquids in macropores only bulk and surface diffusion can be expected to
make significant contributions to the effective macropore diffusivity.

3. Finally, component i diffuses inside the zeolite crystallites (assumed to be
spherical with radius rc). This diffusion process is termed intracrystalline or
micropore diffusion, and is also the focus of Chapter 10 in this volume.

We focus attention on the situation where intracrystalline diffusion is the ‘‘control-
ling’’ resistance. The reader is referred to standard texts of Ruthven (1–4), Yang (5), Do
(6), and Chen et al. (7) for more detailed discussions of modeling macropore diffusion and
external transport. The transient uptake within the zeolite crystallites is described by the
following partial differential equation:
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where qi is the molar loading of species i, expressed as moles adsorbed per kg of zeolite; Ni

is the molar flux, expressed as mol/m2/s; r is the radial distance coordinate; U is the zeolite
density expressed in kg/m3. Alternatively, we may express the loading as the number of
molecules per unit cell Qi:

@Qi

@t
¼ � 1

U
1

r2
@

@r
ðr2NiÞ ð2Þ

In this case, the density U is expressed as the number of unit cells per m3 and the flux Ni as
molecules/m2/s. For MFI zeolite, for example a loading of four molecules per unit cell
corresponds to 0.6935 mol/kg.

For the solution of Eq. (1) or (2), we need a constitutive equation for the flux Ni.

Fig. 1 Schematic showing a batch adsorber in which the (spherical) zeolite sorbent particles are
exposed to a well-mixed fluid environment.
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A. Fick, Onsager, and Maxwell-Stefan Approaches

The molar flux is commonly taken to be proportional to the gradient of the component
loading:

Ni ¼ �qDi
@qi
@r

¼ �qqi;satDi
@hi
@r

¼ �qQi;satDi
@hi
@r

ð3Þ

where Di is the Fick, or transport, diffusivity of species i; qi,sat and Qi,sat are the saturation
loadings of species i; ui is the fractional occupancy, which obeys:

hi ¼ qi
q
i;sat

¼ Qi

Qi;sat
ð4Þ

An alternative to the Fick formulation is the Onsager approach of irreversible
thermodyamics; in this approach, the chemical potential gradients are recognized as the
‘‘proper’’ driving forces for diffusion:

Ni ¼ qQi;satLi
1

RT

@Ai
@r

ð5Þ

where R is the gas constant; T is the temperature; Li is the Onsager coefficient; Ai is the
chemical potential of sorbed species i. Assuming (local) equilibrium between the sorbed
species and the bulk fluid phase, we have the following relationship for the chemical
potential Ai:

li ¼ li
o þ RT lnð fiÞ ð6Þ

where Ai0 is the chemical potential in the chosen standard state and fi is the fugacity. The
chemical potential gradients may be expressed in terms of the occupancy gradient:
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where G is the thermodynamic ‘‘correction’’ factor. If the bulk fluid phase is gaseous and
the system pressures are not too high, the component partial pressure, pi, can be used in
place of the component fugacity, fi, i.e. fi c pi.

The interrelation between the Fick and Onsager coefficient is

Li

hi
¼ Di

G
uDi ð8Þ

Experimental data for several systems show that Di uDi=G is practically independent
of the loading; this coefficient is referred to as the ‘‘corrected’’ or ‘‘jump’’ diffusivity. The
corrected diffusivity Di is also identical to diffusivity that arises from the Maxwell-Stefan
description of zeolite diffusion, to be developed below. As discussed in Chapter 10 in this
volume, for strong confinement of guest molecules in zeolites, the Maxwell-Stefan
diffusivity often decreases with loading, following a Di (0)(1�ui) where Di (0) is the zero-
loading diffusivity of the pure component.

Consider the sorption data for benzene in MFI at a temperature T = 343 K (8); cf.
Fig. 2a. The experimental data are reasonably well represented by the Langmuir
isotherm:

Qi ¼ Qi;satbiP

1þ biP
; ui ¼ biP

1þ biP
ð9Þ
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Fig. 2 (a) Pure component isotherms for sorption of benzene on MFI at a temperature of 343 K. (Experimental data

from Ref. 8.) The Langmuir model parameters are Q1,sat = 4, b1,A = 6 � 10�4 Pa�1. (b) The thermodynamic
correction factor calculated using the Langmuir model. (c) Fick and Maxwell-Stefan diffusivity data for benzene in
MFI at 343 K. (Data from Ref. 9). Molecular dynamics simulations of (d) thermodynamic factor, (e) jump and
transport, and (f) self-diffusivities of CH4 in MFI at 300 K. (MD data from Ref. 10.)
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where the saturation capacity Qi,sat is four molecules per unit cell of MFI and the
Langmuir constant bi=6 � 10�4 Pa-1. The thermodynamic correction factor can be
determined from Eq. (7) as follows:

G ¼ 1

1�Qi=Qi;sat
¼ 1

1�ui
ð10Þ

Figure 2b shows the variation of the thermodynamic factor with molecular
loading. Notice the sharp increase in G as Qi approaches the saturation capacity, Qi,sat

(=4). The Fick diffusivity data for benzene in MFI measured by Shah et al. (9) are
shown in Fig. 2c and are seen to parallel the behavior of G. As seen in Fig. 2c Di

increases sharply as Qi approaches the saturation capacity, Qi,sat (=4). The Maxwell-
Stefan diffusivity Di is practically independent of the sorbate loading; see the square
symbols in Fig. 2c.

Consider now the Molecular Dynamics (MD) simulation results of Maginn et al.
(10) for diffusion of CH4 in MFI at 300 K for G, D, and D that have been reproduced in
Fig. 2d and e. The simulated G follows Langmuirian behavior with a fitted value of Qsat =
18.76 molecules per unit cell; see Fig. 2d. From Fig. 2e, we note that the jump, or
Maxwell-Stefan diffusivity, is essentially independent of loading. The transport D, which is
the product, DG, shows the same trend as does G; see Fig. 2b. The MD simulations for the
self-diffusivity D* show that these decrease with loading; this is due to vacancy correlation
effects as discussed by Paschek and Krishna (11). The self-diffusivity cannot be identified
with the jump diffusivity except at zero loadings.

B. Adsorption vs. Desorption Rates

An important consequence of the nonlinear loading dependence of the Fick diffusivity
following Di=Di/(1�ui) is that adsorption and desorption processes do not proceed at
the same rate. During the adsorption process the Fick diffusivity increases with time, i.e.,
with loading. Conversely, during the desorption process the Fick diffusivity decreases
with time and therefore proceeds considerably more slowly than adsorption. This
asymmetry is illustrated by calculations for diffusion of ethane in 4A zeolite presented
in Fig. 3, which were obtained by solving the partial differential Eq. (1) subject to the
following conditions:

Initial condition: t ¼ 0; 0 < r < rc : qi ¼ qi;0; Qi ¼ Qi;0; hi ¼ hi;0 ð11Þ
Boundary ðsurfaceÞ condition: t > 0; r ¼ rc: qi ¼ qi;s; Qi ¼ Qi;s;

hi ¼ hi;s ð12Þ
Here qi,0 is the initial loading and qi,s is the loading that is in equilibrium with the

bulk fluid phase. The Maxwell-Stefan diffusivity of ethane 4A zeolite is taken as Di/rc
2 =

2.45 � 10�4 s�1 following Garg and Ruthven (12). The method of lines (13) was used to
solve the set of Eqs. (1), (3), and (10). The y axis in Fig. 2 represents the fractional
approach to equilibrium, defined as (qi�qi,0)/(qi,s�qi,0) where qi is the average loading
within the particle at any time t, defined by

qi ¼
3

r3c

Z c

0

qir
2dr ð13Þ

As can be seen in Fig. 3, there is excellent agreement between the experiments of
Garg and Ruthven (12) and the simulation results. Also, the results shown in Fig. 3
confirm the asymmetry in adsorption and desorption kinetics.
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C. Constant Fick Diffusivity and LDF Models

If the Fick diffusivity is independent of the loading, Eq. (1) can be solved analytically to
obtain

ðqi�qi;0Þ
ðqi;s�qi;0ÞuF ¼ 1� 6

p2
Xl
m¼1

expð�m k2 Di

r2c
tÞ

m2
ð14Þ

For comparison purposes, this constant-D solution is also plotted in Fig. 3 with a
dotted line. It is clear that thermodynamic correction factor, given by Eq. (10), has a
significant influence on adsorption and desorption rates.

Equation (14) can be used to obtain the time-averaged Sherwood number (Sh) within
the zeolite crystals:

Shu
kð2rcÞ
D

u� 2

3
Di

r2c
t

� � lnð1� FÞ ð15Þ

where F is the fractional approach to equilibrium given by Eq. (14), and k in Eq. (15) is
defined by the second equality. The variation of the Sh and F with the Fourier number,
tD/rc

2, is shown in Fig. 4. In the adsorption literature a constant value of Sh=10,
corresponding to a 75% approach to equilibrium, is usually taken to model uptake in
batch adsorbers and breakthrough curves in packed beds. This assumption is usually
referred to as the linear driving force (LDF) approximation. In general, the LDF approach
is not appropriate for modeling of zeolitic adsorption because of the strong dependence of
the Fick diffusivity on the loading. The LDF approach is probably good enough when the
fractional loading u in the zeolite is below about 0.2 during the entire process. For such
cases, the constant-D assumption may be justified. For all other cases, we have to contend

Fig. 3 Adsorption and desorption of ethane in 4A zeolite. (Experimental data from Ref. 12.) The
simulation results with Di/rc

2 = 2.45 � 10�4 s-1.
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with solving the nonlinear partial differential equations (1) within the zeolite crystal. We
do not discuss the LDF approximation further in this chapter and refer the reader to
standard texts (1–6).

D. Isotherm Inflection Influence

In the foregoing discussions we have used the Langmuir isotherm to describe the
sorption isotherm; in many cases the isotherms exhibit inflection behavior. Configura-
tional bias Monte Carlo (CBMC) simulations of the isotherms of alkanes in the one- to
seven-carbon-atom range at 300 K in MFI zeolite are shown in Fig. 5; the CBMC
simulation technique has been described in detail in publications by Smit and coworkers
(14–21) (see also Chapter 9 in this volume by the same authors). Normal heptane shows
a pronounced inflection at a loading of Q=4. Normal hexane shows a slight inflection
at this loading due to ‘‘commensurate freezing’’ effects (22). All 2-methylalkanes show
inflection behavior (see Fig. 5c); this is because these molecules prefer to locate at the
intersections between straight and zig-zag channels, which offers more ‘‘leg room’’ (20).
At Q=4 all intersections are fully occupied. To locate the 2-methylalkanes within the
channel interiors requires an extra push, leading to inflection behavior. The 2,2-
dimethylbutane (22DMB) and 2,2-dimethylpentane (22DMP) molecules are too bulky
to be located at the channel interiors, and both molecules show a maximal (saturation)
loading of 4 (see Fig. 5d).

A simple model accounting for inflection behavior is the dual-site Langmuir (DSL)
model. In this model the loading, Qi

0 (P), expressed in molecules per unit cell, is expressed
as a function of the pressure P as follows:

Q0
i uQi;A þQi;B ¼ Qi;sat;Abi;AP

1þ bi;AP
þ Qi;sat;Bbi;BP

1þ bi;BP
ð16Þ

The superscript 0 on Qi
0 (P) is used to emphasize that the relation is for pure component

loadings. In Eq. (16), b1,A and b1,B represent the DSL model parameters expressed in Pa-1

Fig. 4 Simulation of intraparticle diffusion using constant diffusivity model.
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and the subscripts A and B refer to two sorption sites within the MFI structure, with
different sorption capacities and sorption strengths. The Qi,sat,A and Q i,sat,B represent the
saturation capacities of sites A and B, respectively. The fitted parameters for the pure
component isotherms, shown in Fig. 5, are listed in Table 1. It is to be noted that the total
saturation loading Qi,sat=Qi,sat,A + Q i,sat,B is not a fitted parameter but taken from the
final plateau value of the sorption isotherm, estimated from CBMC simulations. In
general, the saturation loading decreases with increasing carbon number and with
increased degree of branching; see Fig. 6.

Fig. 5 Pure component isotherms for linear, 2-methyl- and dimethylalkanes in MFI at 300 K

calculated using CBMC simulations (Refs. 14–21). The continuous lines represent the fits of the
isotherms using the dual-site Langmuir model with parameters given in Table 1.
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The thermodynamic correction factor for the DSL model is

G ¼ 1
Qi;A

Qi
1� Qi;A

Qi;sat;A

� �
þ Qi;B

Qi
1� Qi;B

Qi;sat;B

� � ð17Þ

Calculations of the thermodynamic correction factor for linear and 2-methylalkanes are
shown in Fig. 7. The thermodynamic correction factor for nC7 and all 2-methylalkanes

Table 1 Dual-Site Langmuir Parameters for Pure Alkanes in MFI at 300 Ka

Dual Langmuir parameters

Site A Site B

Component
bi,A
(Pa�1)

Qi,sat,A

(molecules per unit cell)
bi,B
(Pa�1)

Qi,sat,B

(molecules per unit cell)

C1 4.86 � 10�6 11.0 2.38 � 10�7 8.0

C2 9.73 � 10�5 12.0 4.38 � 10�7 3.0
C3 9.64 � 10�4 11.0 5.06 � 10�6 1.0
nC4 1.63 � 10�2 9.0 1.14 � 10�5 1.0

nC5 0.25 8.0 2 � 10�4 0.5
2MB 0.4 4.0 3 � 10�4 4.2
nC6 7.0 4.0 0.4 4.0

2MP 10.0 4.0 2.0 � 10�5 3.0
22DMB 0.76 4.0 — 0
nC7 150 4.0 5 � 10�2 3.0
2MH 260 4.0 7 � 10�6 2.0

22DMP 60 4.0 — 0

a Fits correspond to CBMC simulations.

Fig. 6 Maximal saturation loadings of linear, 2-methyl- and dimethylalkanes in MFI at 300 K.
CBMC calculations at 300 K using NVT simulations. (From Ref. 16.)
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shows two extrema: a maximum at the inflection point Q= Qi,sat,A = 4 and a minimum at
a loading Qi,sat,A< Q< Q i,sat,A + Q i,sat,B.

The isotherm inflection for 2-methylalkanes is due to preferential location of
molecules at the intersection. Inflection behavior is also exhibited by benzene in MFI at
T=303 K due to phase transitions (Fig. 8a). Since the Fick diffusivity is proportional to
the thermodynamic factor, it can be expected to also exhibit two extrema if the Maxwell-
Stefan diffusivity has a negligible loading dependence. This is verified by the experimental
data of Shah et al. (9); see Fig. 8c.

In order to illustrate the influence of isotherm inflection on the uptake character-
istics, let us consider desorption of 3-methylpentane (3MP) from MFI zeolite at a
temperature of 362 K. The DSL isotherm parameters, obtained from CBMC simulations
(14–21), are specified in Table 2. Initially the crystals are equilibrated by exposing to
surrounding 3MP vapor at a pressure pi,0=100 kPa. The equilibrium loading within MFI
is uniform and Qi,0=5.596 molecules per unit. At time t=0, the surface of the zeolite
crystals is exposed to 3MP vapor at a partial pressure pi,s=0.5 Pa, which gives an
equilibrium loading at the outer surface Qi,s=0.093. Numerical solution of the partial
differential equation (2), with the initial and boundary conditions given by Eqs. (11) and
(12), yields the Qi (t) shown in Fig. 9a. We note an inflection in the desorption kinetics,
indicated by the arrow. Figure 9b compares the desorption and adsorption kinetics of
3MP. The desorption kinetics are much slower than the adsorption kinetics; this is
evidenced by the fact that at FouDt/rc

2=0.04, the adsorption process is nearly at
equilibrium whereas the desorption process has still a long way to go to equilibration.

A three-site model for sorption of aromatics on ZSM-5 has been proposed by
Rudzinski et al. (23) to account for two inflection points observed under certain
temperature conditions. The consequences for diffusion can be expected to be interesting
but there is no experimental evidence in the literature.

Fig. 7 Thermodynamic factor for (a) linear alkanes and (b) 2-methylalkanes in MFI at 300 K

calculated using the dual-site Langmuir (DSL) model. DSL parameters given in Table 1.
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III. PERMEATION OF SINGLE COMPONENT ACROSS
ZEOLITE MEMBRANE

Zeolite membranes are currently being developed for carrying out separations and
catalytic reactions. It is important in practice to determine the permeation fluxes across
the membrane. Most commonly, zeolite membrane devices are operated under steady-
state conditions, though laboratory experiments also monitor the transience prior to
achievement of steady state (24–26).

Fig. 8 (a) Pure component isotherms for sorption of benzene on MFI at a temperature of 303 K.

(Experimental data from Ref. 8.) The dual-site Langmuir model parameters are Qsat,A = 4, Qsat,B

= 4, b1,A = 7 � 10-3 Pa-1, b1,B = 1.2 � 10-5 Pa-1. (b) The thermodynamic correction factor
calculated using the DSL model. (c) Fick diffusivity data for benzene in MFI at 303 K. (Data from
Ref. 9.)
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We focus here on the permeation of a single component, species i, from a well-mixed
upstream compartment, across the membrane, to a well-mixed downstream compartment.
The permeate gases are often flushed out of the downstream compartment by means of a
‘‘sweep’’ gas (e.g., helium) in order to maintain the partial pressures of the permeants at
low values; see Fig. 10. The zeolite crystals are deposited, or grown, onto a support layer
consisting, say, of metal wool and/or a macroporous layer of sintered stainless steel
particles (25,26). The diffusion through the support layer is akin to transport through the
macropores within a sorbent particle and has been considered in detail by van de Graaf
(25). The zeolite layer may have nanoscopic defects such as voids and pinholes that can be
modeled in the manner described by Nelson et al. (27). In the following we ignore the
support resistance and concentrate on the permeation characteristics of a defect-free
zeolite membrane layer (of thickness y). The upstream and downstream faces of the zeolite

Table 2 Dual-site Langmuir Parameters for Hexane Isomers in MFIa

Dual Langmuir parameters

Site A Site B

Component
Temp.
(K)

bi,A
(Pa�1)

Qi,sat,A

(molecules
per unit cell)

bi,B
(Pa�1)

Qi,sat,B

(molecules
per unit cell)

nC6 362 6.32 � 10�2 4.0 1.7 � 10�3 4.0

3MP 362 4.75 � 10�2 4.0 2.27 � 10�5 2.3

a Fits correspond to CBMC simulations (from Ref. 30).

Fig. 9 (a) Kinetics of desorption of 3MP in MFI at 362 K. (b) Comparison of adsorption and

desorption kinetics for 3MP.
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layer are assumed to be in equilibrium with the upstream and downstream partial
pressures of the species, respectively:

Upstream face: z ¼ 0; pi ¼ pi;0; qi ¼ qi;0; Qi ¼ Qi;0; hi ¼ hi;0 ð18Þ
Downstream face: z ¼ d; pi ¼ pi;d; qi ¼ qi;d; Qi ¼ Qi;d; hi ¼ hi;d ð19Þ

The permeation flux is obtained by solving

@hi
@t

¼ � 1

UQi;sat

@Ni

@z
ð20Þ

where Eq. (3) is used to describe the single-component permeation flux.

A. Permeation of Methane and n -Butane Across MFI Membrane

For illustration, let us consider transient permeation of methane (C1) across a MFI
membrane at 300 K. The upstream partial pressure of C1 is held at pi,0=50 kPa. The
downstream pressure pi,y is maintained at vanishing values by means of a sweep gas.
Taking the Maxwell-Stefan diffusivity of methane as Di=10-9 m2/s, along with the DSL
isotherm parameters reported in Table 1, Eq. (20) can be solved to follow the transience in
permeation flux Ni as steady state is approached; the results are shown in Fig. 11. At
steady state, the permeation flux of methane is 19.46 mmol/m2/s. For identical upstream
and downstream partial pressures, the permeation of n-butane (nC4), with Di=10-11 m2/s,
DSL parameters (also given in Table 1) show a much slower approach to the steady-state
value of 4.65 mmol/m2/s (see Fig. 11) because of its much lower diffusivity value.

For a 50:50 mixture of C1 (1) and nC4 (2), each with a 50-kPa upstream partial
pressure, we might expect the permeation selectivity, SP, defined by

Sp ¼ N2=N1

p20=p10
ð21Þ

to be 4.65/19.46=0.239. We will see later that this expectation is far removed from reality
because of the peculiarities of mixture diffusion in zeolites.

Fig. 10 Schematic of zeolite membrane separation device.
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IV. MODELING MIXTURE DIFFUSION WITH THE
MAXWELL-STEFAN FORMULATION

For n-component diffusion the fluxes Ni are related to the gradients of the fractional
occupancies by the generalization of Fick’s law:

ðNÞ ¼ �q½Qsat�½D� @ðuÞ
@r

ð22Þ

where [D] is the n-dimensional square matrix of Fick diffusivities; [Qsat] is a diagonal
matrix with elements Qi,sat, representing the saturation loading of species i. The fractional
occupancies ui are defined by Eq. (4). The estimation of the n � n elements of [D] is
complicated by the fact that these are influenced not only by the species mobilities (i.e.,
diffusivities Di) but also by the sorption thermodynamics. In setting up a proper mixture
diffusion theory we need to use chemical potential gradients as the proper driving forces.
In the Onsager irreversible thermodynamics (IT) formulation, we generalize Eq. (5) in the
following manner:

ðNÞ ¼ �q½Qsat�½L� 1

RT

@ðAÞ
@r

ð23Þ

where @ðAÞ
@r is the column matrix of chemical potential gradients; [L] is the square matrix of

Onsager coefficients having the units [m2 s-1]. The Onsager matrix [L] is nondiagonal, in
general, and the cross-coefficients portray the coupling between species diffusion. The
Onsager reciprocal relations demand that the matrix [L] be symmetrical, i.e.,

Lij ¼ Lji; i; j ¼ 1; 2; . . . ; n ði 6¼ jÞ ð24Þ
The chemical potential gradients in Eq. (23) may be expressed in terms of

the gradients of the occupancies by introduction of the matrix of thermodynamic
factors [G]

Fig. 11 Single-component transient permeation of methane (C1) and n-butane (nC4) across MFI
membrane at 300 K.
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hi
RT

@li
@r

¼
Xn
j¼1

Gij
@hj
@r

; Giju
Qj;sat

Qi;sat

� �
Qi

pi

@pi
@Qj

; i; j ¼ 1; 2; . . . ; n ð25Þ

Knowledge of the sorption isotherm is sufficient to allow estimation of [G] and @ðAÞ
@r . If

the n-component sorption can be described by the multicomponent Langmuir isotherm,
the elements of [G] are given by

Gij ¼ dij þ hi
1�h1�h2� . . .� un

; i; j ¼ 1; 2; . . . ; n ð26Þ

where yij is the Kronecker y.
Combining Eqs. (23) and (25), we obtain

ðNÞ ¼ �q½Qsat�½L�
1=h1 0 0
0 O 0
0 0 1=hn

2
4

3
5½G� @ðuÞ

@r
ð27Þ

Comparing Eqs. (22) and (27), we obtain the interrelation:

½D� ¼ ½L�
1=h1 0 0
0 O 0
0 0 1=hn

2
4

3
5½G� ð28Þ

The Fick matrix [D] can be estimated from knowledge of the Onsager matrix [L]. In
general the thermodynamic correction factor matrix [G] is nondiagonal and this makes
multicomponent diffusion in zeolites a strongly coupled process.

Unfortunately, the IT theory provides no fundamental guidelines for estimating [L]
from data on pure component transport coefficients. For estimating [D] it is more
convenient to adopt the Maxwell-Stefan formulation, entirely consistent with the theory
of IT, in which the chemical potential gradients are written as linear functions of the fluxes
(28–31):

�q
hi
RT

jAi ¼
X
j¼1
jp i

n QjNi �QiNj

Qi;satQj;satDij
þ Ni

Qi;satDi
; i ¼ 1; 2; . . . ; n ð29Þ

We have to reckon in general with two types of Maxwell-Stefan diffusivities: Di and
Dij. The Di are the diffusivities that reflect interactions between species i and the zeolite
matrix; they are also referred to as jump or ‘‘corrected’’ diffusivities in the literature (1–4)
and can be identified with the pure component transport parameters. There are two types
of loading dependences which the Di exhibit: (a) for weak confinement of guest molecules,
Di=Di(0), the zero-loading pure component diffusivity, and (b) for strong confinement
Di=Di(0)(1�ui). In all of the illustrative examples to be presented below we assume the
weak confinement scenario to hold.

Mixture diffusion introduces an additional complication due to guesti�guestj
interactions. This interaction is embodied in the ‘‘interchange’’ or ‘‘exchange’’ coefficients
Dij. We can consider this coefficient as representing the facility for counterexchange, i.e.,
at a sorption site the guest species j is replaced by the species i. For intersecting channel
structures such as MFI (see Fig. 12a) the interchange process takes place predominantly
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at the channel intersections. In structures such as LTA and FAU, molecule�molecule
exchange takes place predominantly within the cages (Fig. 12b). The Onsager reciprocal
relations require Dij=Dji. The net effect of this counterexchange is a slowing down of a
faster moving species due to interactions with a species of lower mobility. Also, a species
of lower mobility is accelerated by interactions with another species of higher mobility.
An alternative interpretation is to regard Dij as quantifying vacancy correlation effects
(32–34). For structures such as MFI, consisting of a three-dimensional network of
intersecting straight and zig-zag channels, there is a strong correlation between the
molecular jumps and the inclusion of the interchange coefficients Dij is essential in
describing the mixture diffusion process; this has been verified by Paschek and Krishna
(34) using kinetic Monte Carlo (KMC) simulations. For estimation of the Dij within MFI,
they show that the logarithmic interpolation formula, suggested by Krishna and
Wesselingh (28):

Dij ¼ ½Di�hi=ðhiþhjÞ½Dj�hj=ðhiþhjÞ ð30Þ

is of sufficient accuracy.

Fig. 12 Pictorial representation of the molecular jumps in (a) MFI structure and (b) cages
separated by windows.
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We now try to interrelate the MS formulation with the Onsager and Fick for-
mulations; to do this we define an n-dimensional square matrix [B] with elements

Bij ¼ 1

Di
þ
X
j¼1
jp i

n hi
Dij

; Bij ¼ uj
Dij

; i; j ¼ 1; 2; . . . ; n ð31Þ

With this definition of [B], Eq. (29) can be cast in n-dimensional matrix form:

ðNÞ ¼ �q½Qsat�½B��1½G� @ðuÞ
@r

ð32Þ

which gives the following expressions for the Onsager and Fick matrices

½L� ¼ ½B��1
h1 0 0
0 O 0
0 0 hn

2
4

3
5; ½D� ¼ ½B��1½G� ð33Þ

For single-component diffusion, Eq. (33) simplifies to Eq. (8). Equations (31) and
(33) show that the interchange coefficients Dij, portraying correlated molecular jumps, will
influence all the elements of [L] and [D]. Put another way, the main elements of the
Onsager matrix Lii cannot be identified with pure component diffusion coefficients, as has
been erroneously suggested in the literature by Sundaram and Yang (35). In general, the
Fick [D] matrix has large nondiagonal elements and, consequently, the flux of any species i
is strongly coupled to that of all other diffusing species j in the mixture.

For facile particle�particle exchange, i.e., Dij ! l, vacancy correlation effects tend
to get washed out. Facile counterexchange of particles could occur, for example, within
the cages of FAU and LTA zeolites when intracage hopping rates are high. We see from
Eqs. (31) and (33) that when Dij ! l, both [B] and [L] matrices reduce to diagonal
matrices and the flux relations (29) simplify to give:

Nj ¼ �qQi;sat
Lij

RT
jlju� qQi;satDi

hi
RT

jAj; i ¼ 1; 2; . . . ; n ð34Þ

The off-diagonal elements of the Onsager matrix are also a reflection of (vacancy)
correlation effects and the assumption of vanishing off-diagonal elements of [L] signifies
vanishing correlation effects. The set of equations (34), with the multicomponent
Langmuir model to estimate mixture isotherms [see Eq. (26)] were first developed by
Habgood (36,37) to describe two-component diffusion in zeolite 4A. In zeolite 4A, the
intracage hopping is not a limiting factor (Dij ! l). The intercage hopping is governed by
guest–host interactions only, as described by Eq. (34). The Habgood model is thus a
special limiting case of the Maxwell-Stefan approach.

The mixture sorption characteristic influences mixture diffusion in two ways: (a)
mixture sorption determines the magnitudes of the driving forces @(u)/@r, and (b) they
contribute to coupling of the diffusion process due to the presence of the nondiagonal
elements in [G]; even when Eq. (34) applies, the species diffusion is still coupled. The proper
modeling of mixture sorption is the first essential step toward a proper modeling of
mixture diffusion. In particular size and configurational entropy effects during mixture
sorption need to be properly addressed. The entropy effects influencing mixture sorption
also have a significant influence on mixture diffusion, as will be illustrated below by means
of several illustrative examples (see also Chapter 9 in this volume).
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V. ILLUSTRATIVE EXAMPLES OF BINARY MIXTURE DIFFUSION

A. Permeation of Methane–n -Butane Mixture Across MFI Membrane

Consider permeation of a 95:5 binary mixture of methane (C1) and n-butane (nC4) across
an MFI membrane at 300 K. The first important step in modeling of diffusion is to model
the pure component and mixture sorption characteristics; this is required in the determi-
nation of the component driving forces @(u)/@r and the thermodynamic correction factors
[G]. The pure component isotherms at 300 K in MFI zeolite, obtained from CBMC
simulations, are shown in Fig. 5a, along with the DSL fits using the parameters specified in
Table 1. For a 95:5 mixture of C1 and nC4, the component loadings in the mixture
obtained from CBMC simulations are shown in Fig. 13a. The loading of C1 increases
monotonically with increasing pressure. On the other hand the loading of nC4 reaches a
plateau value for pressures in the 1- to 5-MPa range. Increasing the total system pressure
beyond 5 MPa leads to a very slight decline in the loading of nC4. In Fig. 13b, we plot the
sorption selectivity, S, defined by:

S ¼ Q2=Q1

p2=p1
ð35Þ

where p1 and p2 are the partial pressures in the bulk gas phase. For mixture loadings,
Qmix = Q1 + Q2, below 8, the sorption selectivity of nC4 with respect to C1 is
practically constant and equals that calculated from the corresponding Henry coefficients,
i.e., 2200. However, as Qmix increases beyond 8, the sorption selectivity decreases
dramatically to values about one to two orders of magnitude lower. Near saturation
loadings, the vacant spaces in the zeolite are more easily occupied by the smaller methane
molecule. This is a size entropy effect that favors smaller molecules at high pressures. It is
clear that size entropy effects counter the usual enthalpic effect of chain length; increase in
the chain length favors the adsorption enthalpy of the larger molecule.

Fig. 13 (a) Sorption loadings of 95:5 binary mixture of C1 and nC4 in MFI at 300 K. (b) nC4/C1
sorption selectivity. The continuous lines represent the predictions of the IAST.
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From a practical point of view, it is important to be able to predict the mixture
isotherms from pure component isotherm data. It is clear that the multicomponent
Langmuir isotherm will be totally unsuccessful in this regard because the sorption
selectivity predicted by this model will be independent of the mixture loading. Let us
try to estimate the mixture loadings from the pure component isotherms using the ideal
adsorbed solution theory (IAST) of Myers and Prausnitz (38). Briefly, the basic equation
of IAST theory is the analogue of Raoult’s law for vapor�liquid equilibrium, i.e.:

Pyi ¼ P 0
i ðpÞxi; i ¼ 1; 2; . . . ; n ð36Þ

where xi is the mole fraction in the adsorbed phase

xi ¼ Qj

Q1 þQ2 þ . . .Qn
ð37Þ

and Pi
0 (k) is the pressure for sorption of every pure component i, which yields the same

spreading pressure, k, as that for the mixture. The spreading pressure is defined by the
Gibbs adsorption isotherm

pA
kBT

¼ q m
P¼P0

i

P¼0

Q0
i ðPÞ
P

dP ð38Þ

where A is the adsorben surface area per m3 of adsorbent, kB is Boltzmann’s constant,
U is the density of MFI expressed in terms of the number of unit cells per m3, and
Qi
0(P) is the pure component isotherm given by Eq. (16). The total amount adsorbed is

obtained from

QmixiQ1 þQ2 � � � þQn ¼ 1
x1

H0
1ðP0

1
Þ þ x2

H0
2ðP0

2
Þ þ . . .þ xn

H0
nðP0

n Þ
ð39Þ

The set of Eqs. (16), (36)–(39) need to be solved numerically to obtain the loadings of
the individual components in the mixture. We see in Fig. 13a and b that the IAST
predictions are in excellent agreement with the CBMC simulation results. Size entropy
effects are properly accounted for in the IAST mixture model.

Now let us consider permeation of the C1 (1) to nC4 (2) mixture across an MFI
membrane for a situation with upstream partial pressures p1,0=95 kPa, p2,0=5 kPa. The
downstream partial pressures pi,y are assumed to be maintained at vanishing values by
means of a sweep gas. The boundary conditions, Eqs. (18) and (19), are thus determined.
The set of differential equations (20) are solved together with the (coupled) flux Maxwell-
Stefan relations (32) in order to obtain the fluxes Ni across the membrane. The results are
shown in Fig. 14a. The steady-state fluxes of C1 and nC4 are found, respectively, to be
0.125 and 3 mmol/m2/s giving an nC4/C1 permeation selectivity value [see Eq. (21)], SP =
456. During the initial transience, the methane flux attains a maximum in the flux (with a
value of 0.4 mmol/m2/s) at t=1 s. The reason for this peak is that during the initial period,
methane that has a diffusivity value 100 times that of nC4 diffuses faster through the
membrane. However, as time progresses the MFI structure gets increasingly occupied with
nC4 that dislodges the less strongly adsorbed C1. The flux of nC4 is enhanced with
increased nC4 loading. Concomitantly, the flux of C1 decreases because its loading in MFI
decreases. Furthermore, in the Maxwell-Stefan model the interchange coefficient Dij serves
to slow down methane and speed up nC4. All these factors leads to a decline in the flux of
C1 from its peak value of 0.4 to the steady-state value of 0.125 mmol/m2/s.
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The predictions of the fluxes with the M-S model assuming Dij ! l and using Eq.
(34) are shown in Fig. 14b. There is no slowing down of methane due to interchange and
therefore the initial transience shows a peak methane flux of 17 mmol/m2/s, which reduces
at steady state to 4.8. Assuming Dij ! l has a less dramatic influence on the nC4 flux,
which reaches a steady-state value of 2.96 mmol/m2/s. The permeation selectivity is
calculated as SP=0.235, significantly lower than the value of 456 using the complete
Maxwell-Stefan theory with finite interchange. The experimental value of SP for this 95:5
mixture determined by Bakker (26) is 380, quite close to the estimations of the Maxwell-
Stefan model including interchange.

Fig. 14 (a, b) Transient permeation across MFI membrane of 95:5 mixture of C1 and nC4 in MFI

at 300 K. (c, d) Transient permeation of 50:50 mixture of C1 and nC4 in MFI at 300 K. Two
implementations of the Maxwell-Stefan model are compared, with finite and infinite interchange
coefficients Dij.
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A similar picture emerges for permeation of a 50:50 mixture; see Fig. 14c and d. The
respective values of the permeation selectivities are SP=197 and 5.4. The experimental
value of SP for this 50:50 mixture determined by Bakker (26) is 60. Clearly, the interchange
process within MFI matrix occurs at a finite rate. In Sec. III.A we have calculated the
permeation selectivity on the basis of pure component permeation to be 0.239. Clearly,
these mixture permeation selectivities cannot be predicted on the basis of pure component
permeation data.

We carried out a series of simulations with varying mixture compositions in the
upstream membrane compartment, keeping the total upstream pressure at 100 kPa; the
calculations of SP with the Maxwell-Stefan model, both with finite interchange, following
Eq. (30), and taking Dij ! l, are shown in Fig. 15, along with the Bakker experimental
data (26). The decrease in the permeation selectivity with increasing partial pressure of
nC4 is essentially a size entropy effect that comes into play at high occupancies and favors
the smaller methane molecule. If we had used the multicomponent Langmuir isotherm,
taking the saturation capacities of C1 and nC4 to be equal to one another, the SP would be
predicted to be independent of the upstream composition and have a constant value of
800. Kapteijn et al. (29) and Krishna and Paschek (30) have analyzed permeation data for
C1-C2 and C1-C3 mixtures across an MFI membrane to stress the need for recognizing
the size entropy effects (with the use of the IAST model). Furthermore, the results in Fig.
15 underline the importance of the interchange coefficient Dij in the Maxwell-Stefan
formulation described by Eq. (29).

B. Diffusion of nC6���3MP Mixture in MFI Zeolite

Before analyzing diffusion we need to understand the pure component and mixture
sorption behaviors. The pure component isotherms of hexane isomers nC6 and 3MP in

Fig. 15 Dependence of nC4/C1 permeation selectivity on the two implementations of Maxwell-
Stefan model, with and without inclusion of the interchange coefficient Dij. Also shown are the

experimental data of Bakker (Ref. 26).
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MFI zeolite at 362 K, obtained from CBMC simulations, are shown in Fig. 16a. The
loadings in a 50:50 mixture are shown in Fig. 16b. For Qmix<4 the isomers have
practically the same sorption strength. However, the loading of the monobranched isomer
reduces to very low values when Qmix>4. The reason for this ‘‘exclusion’’ of the 3MP is
because of configurational entropy effects which tends to favor the linear isomer. For
Qmix<4, the 3MP molecules prefer to locate at the intersections between the straight

Fig. 16 (a) Pure component isotherms for nC6 and 3MP in MFI at 362 K. CBMC calculations

and DSL fits. (b) Component loadings for 50:50 mixture obtained from CBMC simulations
compared with IAST predictions. (c) nC6/3MP sorption selectivity as a function of the total mixture
loading Qmix.
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channels and zig-zag channels (16,17,30). The normal alkane can be located anywhere
within the MFI matrix. At Qmix=4, all of the intersection sites are fully occupied. The
3MP demands an extra ‘‘push’’ to locate within the channel interiors (witness the
inflection in the pure component isotherms in Fig. 16a. 3MP suffers a penalty from
configurational entropy considerations because these molecules ‘‘pack’’ less efficiently
within the MFI matrix; this penalty causes 3MP to be virtually excluded from the MFI
matrix near saturation loadings Qmix=8. The sorption selectivity, S, defined by Eq. (35),
is plotted in Fig. 16c as a function of the total mixture loading; S increases significantly
above unity values when the mixture loading Qmix exceeds four molecules per unit cell.

Also shown in Fig. 16b are the IAST calculations of the component loadings with
the DSL parameters reported in Table 2. These are in reasonably good agreement with the
CBMC simulation results; it appears that the IAST mixture rule properly accounts for
configurational entropy effects. Clearly, such effects are not accounted for by the multi-
component Langmuir model to predict mixture behavior.

Let us now consider the uptake of pure components nC6 (1) and 3MP (2) into a
(virgin) spherical MFI crystallite at 362 K. At time t=0, the outer surface of the crystal is
exposed to a vapor phase with p1,s=50 kPa; p2,s=50 kPa; these partial pressures are
maintained until equilibrium is achieved. The pure component uptake kinetics, obtained
by solution of Eqs. (2), (3), together with (16), are shown in Fig. 17a. In these calculations
the pure component Maxwell-Stefan diffusivities are taken to be equal Di/rc

2=4 � 10�7 s-1

for either isomer. The uptake of a 50:50 mixture of nC6 (1) and 3MP (2) with p1,s=50
kPa; p2,s=50 kPa, calculated with the Maxwell-Stefan equations (29)–(32) are shown in
Fig. 17b. The maximum in the transient loading of 3MP is noteworthy; this maximum is
a direct consequence of the maximum in the mixture sorption seen in Fig. 16b. We also
note that at equilibrium, the branched isomer is virtually excluded from the MFI matrix.
The calculations for the uptake using the Maxwell-Stefan model with Dij ! l, Eq. (34),
are shown in Fig. 17c. The results are only slightly different from the Maxwell-Stefan
model including Dij. This result is to be expected because we had assumed the pure
component Maxwell-Stefan diffusivities to be equal for either isomer; there is essentially
no speeding up or slowing down of either molecule due to mobility differences. The small
differences between the complete Maxwell-Stefan model, Eq. (29) and the simplified Eq.
(34) are to be ascribed to the differences in the sorption loadings of nC6 and 3MP and the
influences of these component loadings on the diffusion behavior via the [G] matrix.

The mixture results shown in Fig. 17 are of practical importance because they
provide a means of separating the hexane isomers, relying on configurational entropy
effects. The separation can be achieved by allowing equilibrium to be attained in a batch
adsorber. We need to operate with ambient conditions such that mixture loading Qmix>4;
at 362 K this corresponds to a total system pressure in excess of 10 kPa. There is some
evidence in the patent literature that the entropy concept is being used in commercial
practice to separate mixtures of linear and branched alkanes (39).

High selectivities for separation of the hexane isomers can also be achieved in a
membrane permeation device. Consider permeation of an equimolar mixture of nC6 and
3MP across an MFI zeolite membrane, keeping the upstream compartments at a total
pressure of 2 kPa. The (normalized) transient permeation fluxes, calculated using the
Maxwell-Stefan model are shown in Fig. 18a. The steady-state permeation selectivity SP

can be calculated to be 2.5. Simulations were carried out for a range of system pressures
in the upstream compartment; the results for the fluxes and selectivity are shown in Fig.
18b and c, respectively. We note that values of SP in excess of 10 can be obtained when
the pressure in the upstream compartment increases beyond 20 kPa; the results in Fig. 18c
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mirror the sorption selectivity results shown in Fig. 16c. For operation with an upstream
pressure of 15 kPa, Funke et al. (40) have experimentally determined a value SP of 24;
this is in reasonable agreement with our simulation results shown in Fig. 18c when we
consider that our simulations were entirely based on CBMC simulations and no
experimental data inputs were used. One reason for the higher SP found experimentally
is probably our assumption that the Maxwell-Stefan diffusivities are equal for either
isomer. We would expect nC6 to have a higher mobility than 3MP. More important is the

Fig. 17 (a) Transient uptake of pure components nC6 and 3MP within spherical crystallite of MFI
at 362 K. The bulk vapor phase partial pressures are 50 kPa for either component. (b) Transient

uptake of 50:50 mixture of nC6 and 3MP within spherical crystallite of MFI at 362 K. The bulk
vapor phase partial pressures are 50 kPa for either component. The calculations are with the
Maxwell-Stefan model with finite interchange coefficient Dij. (c) Uptake of 50:50 mixture calculated
with the Maxwell-Stefan model with Dij !l. The model parameters are given in Table 2.
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observation of Funke et al. (40) that the permeation selectivity based on pure compo-
nents was found to be only 1.3. This underlines the fact that subtle configurational
entropy effects are at play here.

The same entropy principle can be used to separate nC6 and 2,2-dimethylbutane
(22DMB), as has been demonstrated by Gump et al. (41), and underpinned using CBMC
simulations (42).

Fig. 18 (a) Transient diffusion fluxes for permeation of 50:50 mixture of nC6 and 3MP across MFI
membrane at 362 K. The upstream partial pressures are p10=1 kPa, p20=1 kPa. (b) Steady-state
permeation fluxes as a function of upstream hydrocarbons pressure. The Maxwell-Stefan diffusivities
of the isomers are taken to be equal, i.e. D1=D2. (c) Separation selectivities as function of upstream

hydrocarbons pressure. (The experimental data point in (c) is from Ref. 40.) The model parameters
are given in Table 2. The Maxwell-Stefan model takes account of finite interchange coefficient Dij,
using Eq. (30).
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C. Diffusion of N2 and CH4 in Zeolite 4A

Consider uptake of N2 and CH4 into a spherical zeolite 4A crystal at 193.7 K.
Experimental data for pure component sorption parameters and diffusivities have been
published in the classic paper by Habgood (36); these data have been reported in Table 3.
The pure component characteristics are interesting because while CH4 has a higher
sorption strength (witness the higher Langmuir b parameter in Table 3), its diffusivity is
considerably lower. The uptake characteristics into 4A zeolite from a bulk vapor mixture
maintaining pN2=50.9 kPa and pCH4=49.1 kPa are shown in Fig. 19. The Habgood data
(open symbols) show that N2 exhibits a peak during its transience to equilibrium. The
reason for this is clear; starting with (virgin) zeolite, the initial loadings are dominated by
the faster diffusing N2. As time progresses, the slower diffusing but more strongly
adsorbing CH4 displaces N2.

Using the pure component data in Table 3, simulations for the uptake were carried
out with the Maxwell-Stefan model, both with finite interchange coefficient Dij calculated

Table 3 Pure Component Langmuir Parameters and M-S Diffusivities for
N2 and CH4 in 4A Zeolite at 193.7 K

Factor N2 CH4

Saturation loading qsat (mol kg�1) 3.75 3.86
Langmuir parameter, b (Pa�1) 1.08 � 10�4 2.56 � 10�4

Di (m
2 s�1) 3.9 � 10�18 1.8 � 10�19

Crystallite radius, rc (m) 0.5 � 10�6

Source: Data from Ref. 36.

Fig. 19 Transient uptake of 50.9% N2, 49.1% CH4 mixture into spherical crystallite of 4A zeolite
at 193.7 K. (Experimental data from Ref. 36.) Two implementations of the Maxwell-Stefan model

are compared, with finite and infinite interchange coefficient Dij. The model parameters are given in
Table 3.
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using Eq. (30) (Fig. 19b) and taking Dij ! l (Fig. 19a). Both Maxwell-Stefan approaches
predict a peak in the N2 flux, but the model assuming Dij ! l does a much better job of
quantitatively predicting the uptake profiles, which casts some doubt on the interpolation
formula in Eq. (30). Habgood has also published experimental data for uptake into 4A
zeolite from a bulk vapour mixture maintaining pN2=10 kPa and pCH4=90 kPa; these
data are shown in Fig. 20, along with the two implementations of the Maxwell-Stefan
model. Again we note that that Maxwell-Stefan model, assuming Dij ! l does a very
good job of predicting the mixture diffusion behavior. It appears that diffusion of N2 and
CH4 in the zeolite 4A sample used by Habgood proceeds following Eq. (34) and is
essentially free from vacancy correlation effects.

D. Co- vs. Counterdiffusion of N2 and CH4

In the transient uptake shown in Fig. 19 we had codiffusion of N2 and CH4 within 4A
zeolite. Let us focus on the transient uptake of N2 and compare two situations: (a) with
codiffusion of CH4 and (b) with CH4 diffusing in a direction countercurrent to N2. The
countercurrent scenario is achieved by preequilibrating the zeolite with CH4 exposing it to
a bulk vapor with pCH4=49.1 kPa. This preequilibrated zeolite is then exposed to a bulk
vapour with pN2=50.9 kPa. Simulations using the Maxwell-Stefan model, taking Dij !
l, are compared in Fig. 21. The two uptake characteristics are markedly different. During
codiffusion, N2 and CH4 compete for sorption sites because they move in the same
‘‘direction’’; N2 wins in the early stages, yields the majority of the sorption sites to CH4

eventually. There is no competition during counterdiffusion but there is cooperation, CH4

diffuses out and makes way for the incoming N2.
The asymmetry in co- and counterdiffusion has also been verified in experimental

studies (43).

Fig. 20 Transient uptake of 10% N2, 90% CH4 mixture into spherical crystallite of 4A zeolite at

193.7 K. (Experimental data from Ref. 36.) Two implementations of the Maxwell-Stefan model are
compared, with finite and infinite interchange coefficient Dij. The model parameters are given in
Table 3.
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E. Separation of O2 and N2 Using 4A Zeolite

The separation of O2 from N2, can be achieved by exploiting the differences in their
diffusivities in small pore 4A zeolite. The separation process is commonly carried out in
a packed bed of sorbent particles (Fig. 22). We now develop a model for breakthrough
in this packed bed for the case in which intracrystalline diffusion is the controlling
resistance. Assuming plug flow, the concentration at any position and instant of time
obtained by solving the following set of partial differential equations (details can be
found in Refs. 1–6,44–46).

@ci
@t

¼ � @ðuciÞ
@z

� 1� e
e

� �
q
@qt
@t

ð40Þ

where ci is the molar concentration in the gas phase, u is the fluid phase (absolute)
velocity, z is the axial coordinate distance, q is the bed porosity, U is the density of the
zeolite crystals, and qi is the average concentration within the spherical particle given by
Eq. (13). Usually the LDF approximation is made in order to avoid solving the
intraparticle diffusion numerically. Furthermore, published models for breakthrough in
packed beds (3,45,46) almost invariably use the multicomponent Langmuir isotherm to
describe mixture diffusion. Use of either LDF or the multicomponent Langmuir
isotherm is not to be recommended in the general case where subtle entropy effects
come into play, affecting sorption and diffusion. For accurate modeling, therefore,
there is no avoiding use of the IAST and using a rigorous solution of intracrystal-
line diffusion.

Consider the breakthrough behavior for air (21% O2, 79% N2) at a pressure of
300 kPa in a packed bed of 0.6 m length; other details and parameters are specified in

Fig. 21 Comparison of transient uptake of N2 with co- and counterdiffusion of CH4 mixture
into spherical crystallite of 4A zeolite at 193.7 K. The Maxwell-Stefan model calculations assumes
Dij !l. The model parameters are given in Table 3.
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Table 4. As is conventional, we plot the normalized concentrations of the two
components at the exit as a function of the dimensionless time tu0/L where u0 is the
interstitial gas velocity at the inlet to the packed bed. In Fig. 23a the breakthrough
curves with the Maxwell-Stefan model, with finite and infinite interchange coefficient Dij,
are compared. As expected, there are little differences in the two implementations of the
Maxwell-Stefan model when the system approaches steady state. The major differences
are during the initial transience. Finite interchange Dij tends to bring the breakthrough
curves of O2 and N2 closer together; this is expected because of the slowing down of the

Fig. 22 Schematic of adsorbed packed with zeolite particles.

Table 4 Pure Component Langmuir Parameters and M-S Diffusivities for O2 and N2 in 4A
Zeolite at 298 K

Factor O2 N2

Saturation loading qsat (mol kg�1) 9.54 6.68

Langmuir parameter, b (Pa�1) 4.95 � 10�8 1.43 � 10�7

Di (m
2 s�1) 1.438 � 10�14 1.519 � 10�16

Partial pressures at inlet to packed bed p (kPa) 63.8 240.2

Packed bed voidage q (�) 0.4
Length of bed, L (m) 0.6 m
Interstitial gas velocity at inlet to bed, u0 (m/s) 0.0436

Crystallite radius, rc (m) 1.3 � 10�6

Also given are the parameters of the packed bed.

Source: Data from Refs. 45 and 46.
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intracrystalline diffusion of O2 and the concomitant speeding up of N2. The slower
diffusing N2 exhibits a ‘‘roll-up’’ in both model implementations. For zeolite 4A, the
Maxwell-Stefan implementation with Dij ! l is more appropriate. If each of the
components were assumed to diffuse independently, oblivious of the other component
with respect to both sorption and diffusion, the breakthrough behavior is shown in
Fig. 23b; in this case, there is no roll-up of N2. There is evidence in the literature (47)
that a proper model of multicomponent mixture diffusion is essential for the success of
this technology for air separation.

VI. CONCLUSIONS

The proper description of mixture sorption and diffusion is essential in applications of
zeolites for separation and reaction. In this chapter we have focused on intracrystalline
diffusion process. The following major points and conclusions emerge from the
foregoing discussions.

1. Intracrystalline diffusion and sorption processes are intertwined; rigorous
models are required to describe both phenomena.

2. Adsorption and desorption of single components proceed at significantly
different rates.

3. The sorption isotherm of some types of molecules, e.g., branched alkanes in
MFI, show inflection; this inflection behavior has a significant impact on the
mixture sorption and diffusion.

4. For mixtures of molecules that differ in their saturation loadings, the proper
description of the mixture isotherm requires the use of the IAST; the
multicomponent Langmuir isotherm is inadequate in this case. Differences in

Fig. 23 Breakthrough of N2 and O2 through packed bed of 4A zeolite particles. (a) Comparison of
two implementations of the Maxwell-Stefan model, with finite and infinite interchange coefficient Dij.

The model parameters are specified in Table 4. (b) Breakthrough curves calculated using an
independent diffusion model.
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the saturation loadings lead to a size entropy effect that favors sorption of the
smaller molecule.

5. The size entropy effect can have a significant impact on membrane permeation
selectivity.

6. For sorption of mixtures of linear and branched alkanes in MFI, configurational
entropy effects come into play; this causes the branched alkanes to be excluded
from the zeolite. Configurational entropy effects can be exploited for achieving
separations of alkane isomers.

7. The Maxwell-Stefan approach allows the prediction of mixture diffusion for
some systems, on the basis of information on the pure component Maxwell-
Stefan diffusivities, Di, along with the mixture isotherms (estimated using say the
IAST). The interchange coefficient Dij accounts for the slowing down of the
molecule with the higher mobility, along with the speeding up of the molecule
with the lower mobility.

8. In MFI zeolite, the complete Maxwell-Stefan model, with a finite interchange
coefficient Dij calculated from Eq. (30) is required for proper description of
mixture diffusion. This has been verified both from KMC simulations (34) and
by comparison with experimental data on membrane permeation (24,26).

9. Published experimental data of Habgood (36) for uptake of N2 and CH4 in
zeolite 4A is better simulated by the Maxwell-Stefan model in which the
interchange occurs at an infinite rate, i.e., Dij ! l.

10. There is a need for more experimental data on mixture diffusion in various
zeolite structures in order to gain a better understanding of the influence of guest
topology on the mixture diffusion characteristics.

11. Co- and counterdiffusion of binary mixtures are asymmetrical phenomena.
12. Accurate prediction of breakthrough behavior in a packed bed requires proper

modeling of intracrystalline mixture diffusion.

NOMENCLATURE

A surface area of adorbent, m2 kg-1

bI parameter in the Langmuir adsorption isotherm, Pa-1

[B] square matrix of inverse Maxwell-Stefan coefficients, m-2 s
cI molar concentration of species i, mol m-3

Di Fick coefficient of pure component i, m2 s-1

D* self-diffusivity, m2 s-1

[D] matrix of Fick diffusivities, m2/s
DI Maxwell-Stefan diffusivity of species i in zeolite, m2/s
Dij Maxwell-Stefan diffusivity describing interchange between i and j, m2/s
fI fugacity of species i; fi = pi for ideal gases, Pa
F fractional approach to equilibrium, dimensionless
Fo Fourier number, tD/rc

2, dimensionless
kB Boltzmann constant, 1.38 � 10-23 J molecule-1 K-1

L length of packed bed, m
Li Onsgager coefficient of pure component i, m2 s-1

[L] matrix of Onsgager coefficients, m2 s-1

m summation parameter defined in Eq. (14), dimensionless
Ni molar or molecular flux of species i, mol m-2 s-1 or molecules m-2 s-1
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Greek Letters

Subscripts

Superscripts

y thickness of membrane, m
q porosity of packed bed, dimensionless
G thermodynamic correction factor, dimensionless
[G] matrix of thermodynamic factors, dimensionless
ui fractional surface occupancy of component i
Qi molecular loading, molecules per unit cell or per cage
Qi,sat saturation loading, molecules per unit cell or per cage
Ai molar chemical potential, J mol-1

k spreading pressure, Pa m
U density, number of unit cells per m3 or kg m-3

A referring to site A
B referring to site B
1 component 1 in binary mixture
2 component 2 in binary mixture
mix referring to mixture loading
sat referring to saturation conditions
i,j components in mixture
p derivative at constant pressure
s referring to surface of particle

0 pure component parameter

P system pressure, Pa
Pi

0 vapor pressure analog in Eq. (36), Pa
pi partial pressure of species i, Pa
qi molar loading of component i, mol kg-1

qi,sat saturation loading of component i, mol kg-1

qj average loading of component i, mol kg-1

r radial distance coordinate, m
rc radius of spherical crystal, m
R gas constant, 8.314 J mol-1 K-1

Sh Sherwood number, dimensionless
S sorption selectivity defined by Eq. (35), dimensionless
SP permeation selectivity defined by Eq. (21), dimensionless
t time, s
T absolute temperature, K
u abolute fluid velocity in packed bed, m s-1

u0 superficial fluid velocity in packed bed, m s-1

xi mole fraction of component i in the adsorbed phase, dimensionless
yi mole fraction of component i in bulk vapour phase, dimensionless
z distance coordinate along membrane, m
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